Problem 2.16

A thick spherical shell carries charge density

$$
\rho=\frac{k}{r^{2}} \quad(a \leq r \leq b)
$$

(Fig. 2.25). Find the electric field in the following three regions: (i) $r<a$, (ii) $a<r<b$, (iii) $r>b$. Plot $|\mathbf{E}|$ as a function of r, for the case $b=2 a$.

Fig. 2.25

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the spherical symmetry, the divergence is sufficient. Both sides will be integrated over the volume of a (black) concentric spherical Gaussian surface with radius r. Three cases need to be considered: (1) $r<a$ and (2) $a<r<b$ and (3) $r>b$.

Integrate both sides of Gauss's law over the volume of the spherical Gaussian surface.

$$
\begin{aligned}
\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \nabla \cdot \mathbf{E} d V_{0} & =\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \frac{\rho}{\epsilon_{0}} d V_{0} \\
& =\frac{1}{\epsilon_{0}} \iiint \int_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \rho d V_{0} \\
& =\left\{\begin{array}{lll}
\frac{1}{\epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{r}(0)\left(r_{0}^{2} \sin \theta_{0} d r_{0} d \phi_{0} d \theta_{0}\right) & \text { if } r<a \\
\frac{1}{\epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{a}^{r} \frac{k}{r_{0}^{2}}\left(r_{0}^{2} \sin \theta_{0} d r_{0} d \phi_{0} d \theta_{0}\right) & \text { if } a<r<b \\
\frac{1}{\epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{a}^{b} \frac{k}{r_{0}^{2}}\left(r_{0}^{2} \sin \theta_{0} d r_{0} d \phi_{0} d \theta_{0}\right) & \text { if } r>b
\end{array}\right.
\end{aligned}
$$

Apply the divergence theorem on the left side and evaluate the integrals on the right side.

$$
\oiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=r^{2}} \mathbf{E} \cdot d \mathbf{S}_{0}= \begin{cases}0 & \text { if } r<a \\ \frac{k}{\epsilon_{0}}\left(\int_{0}^{\pi} \sin \theta_{0} d \theta_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{a}^{r} d r_{0}\right) & \text { if } a<r<b \\ \frac{k}{\epsilon_{0}}\left(\int_{0}^{\pi} \sin \theta_{0} d \theta_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{a}^{b} d r_{0}\right) & \text { if } r>b\end{cases}
$$

Because of the spherical symmetry, the electric field is expected to be entirely radial: $\mathbf{E}=E(r) \hat{\mathbf{r}}$. Note also that the direction of $d \mathbf{S}$ is the outward unit vector to the Gaussian surface.

$$
\oiint_{r_{0}^{2}=r^{2}}\left[E\left(r_{0}\right) \hat{\mathbf{r}}_{0}\right] \cdot\left(\hat{\mathbf{r}}_{0} d S_{0}\right)= \begin{cases}0 & \text { if } r<a \\ \frac{k}{\epsilon_{0}}(2)(2 \pi)(r-a) & \text { if } a<r<b \\ \frac{k}{\epsilon_{0}}(2)(2 \pi)(b-a) & \text { if } r>b\end{cases}
$$

Evaluate the dot product.

$$
\oiint_{r_{0}=r} E(r) d S_{0}= \begin{cases}0 & \text { if } r<a \\ \frac{4 \pi k}{\epsilon_{0}}(r-a) & \text { if } a<r<b \\ \frac{4 \pi k}{\epsilon_{0}}(b-a) & \text { if } r>b\end{cases}
$$

$E(r)$ is constant on the spherical Gaussian surface, so it can be pulled in front of the integral.

$$
E(r) \oiint_{r_{0}=r} d S_{0}= \begin{cases}0 & \text { if } r<a \\ \frac{4 \pi k}{\epsilon_{0}}(r-a) & \text { if } a<r<b \\ \frac{4 \pi k}{\epsilon_{0}}(b-a) & \text { if } r>b\end{cases}
$$

Evaluate the surface integral.

$$
E(r)\left(4 \pi r^{2}\right)= \begin{cases}0 & \text { if } r<a \\ \frac{4 \pi k}{\epsilon_{0}}(r-a) & \text { if } a<r<b \\ \frac{4 \pi k}{\epsilon_{0}}(b-a) & \text { if } r>b\end{cases}
$$

Solve for $E(r)$.

$$
E(r)= \begin{cases}0 & \text { if } r<a \\ \frac{k}{\epsilon_{0}}\left(\frac{r-a}{r^{2}}\right) & \text { if } a<r<b \\ \frac{k}{\epsilon_{0}}\left(\frac{b-a}{r^{2}}\right) & \text { if } r>b\end{cases}
$$

Therefore, the electric field around a thick spherical shell with charge density $\rho=k / r^{2}$ for $a \leq r \leq b$ is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if } r<a \\
\frac{k}{\epsilon_{0}}\left(\frac{r-a}{r^{2}}\right) \hat{\mathbf{r}} & \text { if } a<r<b . \\
\frac{k}{\epsilon_{0}}\left(\frac{b-a}{r^{2}}\right) \hat{\mathbf{r}} & \text { if } r>b
\end{array} .\right.
$$

Below is a plot of $|\mathbf{E}|=E(r)$ versus r for the special case that $b=2 a$.

